18 research outputs found

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-Îł exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of ÎČ-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    MicroSCALE Screening Reveals Genetic Modifiers of Therapeutic Response in Melanoma

    No full text
    Cell microarrays are a promising tool for performing large-scale functional genomic screening in mammalian cells at reasonable cost, but owing to technical limitations they have been restricted for use with a narrow range of cell lines and short-term assays. Here, we describe MicroSCALE (Microarrays of Spatially Confined Adhesive Lentiviral Features), a cell microarray–based platform that enables application of this technology to a wide range of cell types and longer-term assays. We used MicroSCALE to uncover kinases that when overexpressed partially desensitized B-RAF[superscript V600E]–mutant melanoma cells to inhibitors of the mitogen-activated protein kinase kinase kinase (MAPKKK) RAF, the MAPKKs MEK1 and 2 (MEK1/2, mitogen-activated protein kinase kinase 1 and 2), mTOR (mammalian target of rapamycin), or PI3K (phosphatidylinositol 3-kinase). These screens indicated that cells treated with inhibitors acting through common mechanisms were affected by a similar profile of overexpressed proteins. In contrast, screens involving inhibitors acting through distinct mechanisms yielded unique profiles, a finding that has potential relevance for small-molecule target identification and combination drugging studies. Further, by integrating large-scale functional screening results with cancer cell line gene expression and pharmacological sensitivity data, we validated the nuclear factor ÎșB pathway as a potential mediator of resistance to MAPK pathway inhibitors. The MicroSCALE platform described here may enable new classes of large-scale, resource-efficient screens that were not previously feasible, including those involving combinations of cell lines, perturbations, and assay outputs or those involving limited numbers of cells and limited or expensive reagents.Broad Institute of MIT and Harvard (Scientific Planning and Allocation of Resources Committee Grant

    Factors Associated with Total Laryngectomy Utilization in Patients with cT4a Laryngeal Cancer

    No full text
    Background: Despite recommendations for upfront total laryngectomy (TL), many patients with cT4a laryngeal cancer (LC) instead undergo definitive chemoradiation, which is associated with inferior survival. Sociodemographic and oncologic characteristics associated with TL utilization in this population are understudied. Methods: This retrospective cohort study utilized hospital registry data from the National Cancer Database to analyze patients diagnosed with cT4a LC from 2004 to 2017. Patients were stratified by receipt of TL, and patient and facility characteristics were compared between the two groups. Logistic regression analyses and Cox proportional hazards methodology were performed to determine variables associated with receipt of TL and with overall survival (OS), respectively. OS was estimated using the Kaplan–Meier method and compared between treatment groups using log-rank testing. TL usage over time was assessed. Results: There were 11,149 patients identified. TL utilization increased from 36% in 2004 to 55% in 2017. Treatment at an academic/research program (OR 3.06) or integrated network cancer program (OR 1.50), male sex (OR 1.19), and Medicaid insurance (OR 1.31) were associated with increased likelihood of undergoing TL on multivariate analysis (MVA), whereas age > 61 (OR 0.81), Charlson–Deyo comorbidity score ≄ 3 (OR 0.74), and clinically positive regional nodes (OR 0.78 [cN1], OR 0.67 [cN2], OR 0.21 [cN3]) were associated with decreased likelihood. Those undergoing TL with post-operative radiotherapy (+/− chemotherapy) had better survival than those receiving chemoradiation (median OS 121 vs. 97 months; p = 0.003), and TL + PORT was associated with lower risk of death compared to chemoradiation on MVA (HR 0.72; p = 0.024). Conclusions: Usage of TL for cT4a LC is increasing over time but remains below 60%. Patients seeking care at academic/research centers are significantly more likely to undergo TL, highlighting the importance of decreasing barriers to accessing these centers. Increased focus should be placed on understanding and addressing the additional patient-, physician-, and system-level factors that lead to decreased utilization of surgery

    Association between Tumor Microbiome and Hypoxia across Anatomic Subsites of Head and Neck Cancers

    No full text
    Purpose/Objective(s): Microbiome has been shown to affect tumorigenesis by promoting inflammation. However, the association between the upper aerodigestive microbiome and head and neck squamous cell carcinoma (HNSCC) is not well established. Hypoxia is a modifiable factor associated with poor radiation response. Our study analyzed the HNSCC tumor samples from The Cancer Genome Atlas (TCGA) to investigate the relationship between different HNSCC tumor subsites, hypoxia, and local tumor microbiome composition. Results: A total of 357 patients were included [Oral cavity (OC) = 226, Oropharynx (OPx) = 53, and Larynx/Hypopharynx (LHPx) = 78], of which 12.8%, 71.7%, and 10.3%, respectively, were HPV positive. The mean (SD) hypoxia scores were 30.18 (11.10), 24.31 (14.13), and 29.53 (12.61) in OC, OPx, and LHPx tumors, respectively, with higher values indicating greater hypoxia. The hypoxia score was significantly higher for OC tumors compared to OPx (p = 0.044) and LHPx (p = 0.002). There was no significant correlation between hypoxia and HPV status. Pseudomonas sp. in OC, Actinomyces sp. and Sulfurimonas sp. in OPx, and Filifactor, Pseudomonas and Actinomyces sp. in LHPx had the strongest association with the hypoxia score. Materials/Methods: Tumor RNAseq samples from TCGA were processed, and the R package “tmesig” was used to calculate gene expression signature, including the Buffa hypoxia (BH) score, a validated hypoxia signature using 52 hypoxia-regulated genes. Microbe relative abundances were modeled with primary tumor location and a high vs. low tertile BH score applying a gamma-distributed generalized linear regression using the “stats” package in R, with adjusted p-value < 0.05 considered significant. Conclusions: In our study, oral cavity tumors were found to be more hypoxic compared to other head and neck subsites, which could potentially contribute to their radiation resistance. For each subsite, distinct microbial populations were over-represented in hypoxic tumors in a subsite-specific manner. Further studies focusing on an association between microbiome, hypoxia, and patient outcomes are warranted

    Identification of a Synthetic Lethal Relationship between Nucleotide Excision Repair Deficiency and Irofulven Sensitivity in Urothelial Cancer

    No full text
    PURPOSE: Cisplatin-based chemotherapy is a first-line treatment for muscle-invasive and metastatic urothelial cancer. Approximately 10% of bladder urothelial tumors have a somatic missense mutation in the nucleotide excision repair (NER) gene, ERCC2, which confers increased sensitivity to cisplatin-based chemotherapy. However, a significant subset of patients is ineligible to receive cisplatin-based therapy due to medical contraindications, and no NER-targeted approaches are available for platinum-ineligible or platinum-refractory ERCC2-mutant cases. EXPERIMENTAL DESIGN: We used a series of NER-proficient and NER-deficient preclinical tumor models to test sensitivity to irofulven, an abandoned anticancer agent. In addition, we used available clinical and sequencing data from multiple urothelial tumor cohorts to develop and validate a composite mutational signature of ERCC2 deficiency and cisplatin sensitivity. RESULTS: We identified a novel synthetic lethal relationship between tumor NER deficiency and sensitivity to irofulven. Irofulven specifically targets cells with inactivation of the transcription-coupled NER (TC-NER) pathway and leads to robust responses in vitro and in vivo, including in models with acquired cisplatin resistance, while having minimal effect on cells with intact NER. We also found that a composite mutational signature of ERCC2 deficiency was strongly associated with cisplatin response in patients and was also associated with cisplatin and irofulven sensitivity in preclinical models. CONCLUSIONS: Tumor NER deficiency confers sensitivity to irofulven, a previously abandoned anticancer agent, with minimal activity in NER-proficient cells. A composite mutational signature of NER deficiency may be useful in identifying patients likely to respond to NER-targeting agents, including cisplatin and irofulven
    corecore